Source code for

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import csv
import functools
import itertools
import os
from collections import defaultdict
from typing import Any, Callable, List, Optional, Tuple, Type

import torch
from iopath.common.file_io import g_pathmgr
from import ClipSampler
from import FrameVideo

from .utils import MultiProcessSampler

[docs]class Charades( """ Action recognition video dataset for `Charades <>`_ stored as image frames. This dataset handles the parsing of frames, loading and clip sampling for the videos. All io is done through :code:`iopath.common.file_io.PathManager`, enabling non-local storage uri's to be used. """ # Number of classes represented by this dataset's annotated labels. NUM_CLASSES = 157
[docs] def __init__( self, data_path: str, clip_sampler: ClipSampler, video_sampler: Type[] =, transform: Optional[Callable[[dict], Any]] = None, video_path_prefix: str = "", frames_per_clip: Optional[int] = None, ) -> None: """ Args: data_path (str): Path to the data file. This file must be a space separated csv with the format: (original_vido_id video_id frame_id path_labels) clip_sampler (ClipSampler): Defines how clips should be sampled from each video. See the clip sampling documentation for more information. video_sampler (Type[]): Sampler for the internal video container. This defines the order videos are decoded and, if necessary, the distributed split. transform (Optional[Callable]): This callable is evaluated on the clip output before the clip is returned. It can be used for user defined preprocessing and augmentations on the clips. The clip output format is described in __next__(). video_path_prefix (str): prefix path to add to all paths from data_path. frames_per_clip (Optional[int]): The number of frames per clip to sample. """ torch._C._log_api_usage_once("PYTORCHVIDEO.dataset.Charades.__init__") self._transform = transform self._clip_sampler = clip_sampler ( self._path_to_videos, self._labels, self._video_labels, ) = _read_video_paths_and_labels(data_path, prefix=video_path_prefix) self._video_sampler = video_sampler(self._path_to_videos) self._video_sampler_iter = None # Initialized on first call to self.__next__() self._frame_filter = ( functools.partial( Charades._sample_clip_frames, frames_per_clip=frames_per_clip, ) if frames_per_clip is not None else None ) # Depending on the clip sampler type, we may want to sample multiple clips # from one video. In that case, we keep the store video, label and previous sampled # clip time in these variables. self._loaded_video = None self._loaded_clip = None self._next_clip_start_time = 0.0
@staticmethod def _sample_clip_frames( frame_indices: List[int], frames_per_clip: int ) -> List[int]: """ Args: frame_indices (list): list of frame indices. frames_per+clip (int): The number of frames per clip to sample. Returns: (list): Outputs a subsampled list with num_samples frames. """ num_frames = len(frame_indices) indices = torch.linspace(0, num_frames - 1, frames_per_clip) indices = torch.clamp(indices, 0, num_frames - 1).long() return [frame_indices[idx] for idx in indices] @property def video_sampler(self) -> return self._video_sampler
[docs] def __next__(self) -> dict: """ Retrieves the next clip based on the clip sampling strategy and video sampler. Returns: A dictionary with the following format. .. code-block:: text { 'video': <video_tensor>, 'label': <index_label>, 'video_label': <index_label> 'video_index': <video_index>, 'clip_index': <clip_index>, 'aug_index': <aug_index>, } """ if not self._video_sampler_iter: # Setup MultiProcessSampler here - after PyTorch DataLoader workers are spawned. self._video_sampler_iter = iter(MultiProcessSampler(self._video_sampler)) if self._loaded_video: video, video_index = self._loaded_video else: video_index = next(self._video_sampler_iter) path_to_video_frames = self._path_to_videos[video_index] video = FrameVideo.from_frame_paths(path_to_video_frames) self._loaded_video = (video, video_index) clip_start, clip_end, clip_index, aug_index, is_last_clip = self._clip_sampler( self._next_clip_start_time, video.duration, {} ) # Only load the clip once and reuse previously stored clip if there are multiple # views for augmentations to perform on the same clip. if aug_index == 0: self._loaded_clip = video.get_clip(clip_start, clip_end, self._frame_filter) frames, frame_indices = ( self._loaded_clip["video"], self._loaded_clip["frame_indices"], ) self._next_clip_start_time = clip_end if is_last_clip: self._loaded_video = None self._next_clip_start_time = 0.0 # Merge unique labels from each frame into clip label. labels_by_frame = [ self._labels[video_index][i] for i in range(min(frame_indices), max(frame_indices) + 1) ] sample_dict = { "video": frames, "label": labels_by_frame, "video_label": self._video_labels[video_index], "video_name": str(video_index), "video_index": video_index, "clip_index": clip_index, "aug_index": aug_index, } if self._transform is not None: sample_dict = self._transform(sample_dict) return sample_dict
def __iter__(self): return self
def _read_video_paths_and_labels( video_path_label_file: List[str], prefix: str = "" ) -> Tuple[List[str], List[int]]: """ Args: video_path_label_file (List[str]): a file that contains frame paths for each video and the corresponding frame label. The file must be a space separated csv of the format: `original_vido_id video_id frame_id path labels` prefix (str): prefix path to add to all paths from video_path_label_file. """ image_paths = defaultdict(list) labels = defaultdict(list) with, "r") as f: # Space separated CSV with format: original_vido_id video_id frame_id path labels csv_reader = csv.DictReader(f, delimiter=" ") for row in csv_reader: assert len(row) == 5 video_name = row["original_vido_id"] path = os.path.join(prefix, row["path"]) image_paths[video_name].append(path) frame_labels = row["labels"].replace('"', "") label_list = [] if frame_labels: label_list = [int(x) for x in frame_labels.split(",")] labels[video_name].append(label_list) # Extract image paths from dictionary and return paths and labels as list. video_names = image_paths.keys() image_paths = [image_paths[key] for key in video_names] labels = [labels[key] for key in video_names] # Aggregate labels from all frames to form video-level labels. video_labels = [list(set(itertools.chain(*label_list))) for label_list in labels] return image_paths, labels, video_labels
Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.